Direct oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica

نویسندگان

  • J. Gholami
  • A. R. Badiei
  • G. Mohammadi Ziarani
  • A. R. Abbasi
چکیده

Vanadium supported on highly ordered nanoporous silica (VOxLUS-1) was synthesized and characterized by XRD, Nitrogen adsorption desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide was examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the phenol produced were obtained in the presence of acetic acid. The catalyst can be reused for several times without any appreciable loss of activity. 2012 JNS All rights reserved Article history: Received 28/10/2011 Accepted 23/12/2011 Published online 1/1/2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica

Vanadium supported on highly ordered nanoporous silica (VOx-LUS-1) was synthesized and characterized by XRD, Nitrogen adsorption‑desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the ph...

متن کامل

Direct Oxidation of Benzene to Phenol in Liquid Phase over Nanoporous Silica of Chromium-LUS-1

(Received: May 18, 2012; Accepted in Revised Form: February 4, 2013) Abstract: Direct oxidation of benzene to phenol in liquid phase in the medium of methanol, acetone, acetic acid and acetonitrile as a solvent over chromium catalyst supported on highly ordered nanoporous silica (Cr-LUS-1) by H O were examined. The best results obtained from methanol solvent with 20% yield and selectivity of 90...

متن کامل

Application of Response Surface Methodology as an Efficient Approach for Optimization of Operational Variables in Benzene Hydroxylation to Phenol by V/SBA-16 Nanoporous Catalyst

Herein, we prepared a V/SBA-16 catalyst using vanadyl acetylacetonate as a precursor and SBA-16 nanoporous silica as a support via an immobilization technique. The ordered mesoporous structure of catalyst was determined by X-ray diffraction  and transmission electron microscopy techniques , and the catalyst was evaluated in the benzene hydroxylation to phenol with hydrogen peroxide (H2O2) as a ...

متن کامل

Synthesis and characterization of VOx/LUS-1 nanoporous silica and application for direct oxidation of benzene to phenol

The VOx/LUS-1 nanoporous silica synthesis and characterized by XRD, Nitrogen adsorption–desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various (methanol, acetone, acetic acid, acetonitryl) solvents.

متن کامل

Vanadium oxide supported on mesocellulous silica foams (MCF): An efficient and reusable catalyst for selective oxidation of sulfides

A green, efficient and selective approach for the oxidation of sulfides to sulfoxides and sulfones with UHP at room temperature is reported. The reaction is performed in the presence of vanadia catalyst supported on mesocellular silica foam (MCF) with a V content ranging from 2% to 10% as heterogeneous and reusable catalyst. The structural and textural characterization of this catalyst were don...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011